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How to solve dynamic games and dynamic 
programming problems in parallel on a 
computational grid

Computational structure and workflow

Applications:
strategic competition in the world oil market
integrated assessment models of climate change
R&D investment in a market with many firms
Production with inventories

Overview
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HTCondor is a scheduling system for managing 
distributed computing nodes.
Matches jobs and machines (nodes) based on 
“ClassAds” (requirements—disk space, cores, 
etc.)
HTC (high-throughput computing)
DAGMan: an extension to HTCondor that 
allows workflows to be described as DAGs

Introducing HTCondor
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Center for High Throughput Computing (UW-
Madison)
A cluster with over 20,000 total cores
Part of the Open Science Grid

CHTC
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What makes problems acyclic?
Working on the extension to cyclic problems (will 
talk more about it at the end, time permitting)

Directed Acyclic Graph Structure
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Solve backwards from the terminal states
Works for anything with this unidirectional flow 
(a dynamic game, dynamic programming 
problems)

Solution Method
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Oil Extraction
Oil doesn’t go back into the ground.

Time
A climate model where the terminal state is 600 
years from now, and we solve for values and 
optimal policies back to the present.

Applications
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(Bold denotes vectors)

Cost:

Pricing:

Profit:

Reserves constraint:

The only effect of reserves is that production must be 0 if 
reserves are 0. (A more realistic formulation is that production 
becomes more costly as reserves approach 0.)

Oil Game Model: Static Component
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Reserves transition:

Jumps:
(non-homogeneous Poisson process, equivalent to 

stretching or compressing the time dimension of a standard 
Poisson process)

Transition hazard rate: 

Doraszelski-Judd (2012)

Oil Game Model: Dynamics 
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(ρ is the discount rate)

Bellman equation: 

Investment FOC:

Oil Game Model: Solution
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N quadratic value functions plus N linear FOCs:
Bézout number 2N

The value function surface is bumpy, so optimizers will 
have trouble with it (and engage in implicit 
equilibrium selection)
All-solution homotopy methods (Bertini, see Judd,  
Renner and Schmedders (2012))

Deliberate equilibrium selection

Except Bertini can’t solve for constrained equilibria, so 
implementing a barrier function approach

Solution Method
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4 players, 100 states, value functions for the 
firm/country with the second highest productivity
Parameter choices:

Oil Game Results
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Policy functions very different from the planners’ 
(which is extract in the lowest-cost country first)

Oil Game Results
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A small two-player game

The Computational Structure
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A large two-player game

The Computational Structure
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4 players and 100 
states means 
1004=100 million 
jobs.
Each one runs in a 
tenth of a second.
There’s overhead to 
every job submission.
Solution: group them 
into batches

The Computational Structure
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For this dynamic 
programming problem, the 
direction of flow is rotated 
135 degrees; instead of 
going down and to the 
right, it flows left.
Again, I want to focus on 
the sparsity of the state 
transitions.
In the full model, we have 
1729 state discrete states 
per period, but each state 
only has 35 possible 
transitions, and 35 
dependencies.

The Computational Structure
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This type of 
parallelization waits 
for the last job from 
one block before 
starting on any jobs 
in the next block.

Block-wise Parallelization
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Starts jobs when their dependencies are ready.
Much more efficient on a computational grid: 
6x speedup
Particularly beneficial on larger problems

Wavefront
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Here, I sort jobs into blocks, and then within blocks by the time at which they’re submitted.

Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront

Dynamic Games and HTCondor 35/64



Nathan Lazarus

Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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Wavefront
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HTCondor is not the only job scheduling 
system; there’s also:

sdag (Slurm version)
Pegasus and Wings (built on DAGMan)
CWL
Cylc (designed for cyclic workflows, but you can 
also implement those in DAGMan with RETRY).

Implementing Wavefront
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CHTC
Open Science Grid
JEODPP (European Commission JRC)
Google Cloud

Where to Use HTCondor
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Running jobs on another computer can sound 
difficult. How can you be sure that it will have 
the programs and files required?
The solution: Docker containers!

(Can also transfer an executable)

Dependencies
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Docker containers run jobs in the exact same 
environment every time; as though you went on 
the machine and installed a certain operating 
system and all the programs you need.
But because the host computer already has the 
Linux kernel, Docker can set up the container 
quickly and easily (it’s generally less than 100 MB).
MATLAB (with a network license), Mathematica, 
and even Stata are available in containers, and you 
can add additional software to them.

Docker
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GitHub for Docker containers
Free hosting
Public (so machines can pull your images)
With HTCondor’s Docker universe, the execute 
nodes pull containers from Docker Hub by 
default.

Docker Hub
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(A continuous time adaptation of the model in Chapter 7 of Mordecai 
Kurz’s Capital and Wealth in the Age of Technology, forthcoming)

This is a general equilibrium model of optimal R&D 
investment, which we’re hoping to use to study 
optimal antitrust policy.
State variable: R&D stock
Choice variable: R&D investment
Because larger firms affect the aggregate price more, 
firms with greater market share face a smaller 
elasticity of demand (Marshall’s “Second Law of 
Demand,” Autor et al., 2020).

R&D Investment and Policy
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yB is an outside good with price 1, zeta is aggregate productivity, 
and ν is an investment cost with quadratic adjustment costs. yt is a 
CES aggregate produced costlessly from the intermediate goods.

Production:

Outside good production:

Final good production:

Investment cost:

Profit:

R&D Model: Firms and Production
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Labor aggregation:

Utility:

Income:
Optimization:

FOCs:

Price index:

Demand:

Market clearing:

R&D Model: Consumers’ Problem
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R&D stock transition:

Jumps:

Transition hazard rate:

R&D Model: Dynamics 
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We get the optimal price in closed form, so we just solve for the 
dynamically optimal investment (we rule out collusion and other 
equilibria that aren’t Markov perfect). We take     to be exogenous.

Elasticity of demand:

Pricing:

Investment FOC:

Bellman equation:

R&D Model: Solution
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Every firm starts out the same; the differences 
that arise are only due to the stochastic, self-
reinforcing nature of the R&D process.
With identical firms, the state (0, 1) has the same 
solution as the state (1, 0). And in higher 
dimensions, the state (0, 1, 2, 3) has the same 
solution as (3, 0, 2, 1) and the 22 other 
permutations.
The states to compute form a simplex, and pin 
down solutions for the rest of the cube, vastly 
reducing the computational burden.

Symmetry
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Same parallel blocks (or, rather, their projection onto the simplex)

Symmetry
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Cyclic games
Idea: path follow from the unidirectional solution
Iterating on the transition matrix moving with one 
direction of travel is operator decomposition

Gauss-Seidel-style; good convergence properties
Challenges:

• Equilibrium multiplicity
• Dead ends

Future Work
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Grid computing and workflow languages allow 
the parallelization of dynamic programming 
problems and dynamic games that can 
otherwise be difficult to parallelize.
HTCondor and DAGMan are useful for 
implementing this.

Conclusion
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