
Nathan Lazarus

Dynamic Games and HTCondor

Dynamic Games and HTCondor 1/64

Mordecai Kurz, Kenneth Judd and Nathan Lazarus

CEF 2022

June 19, 2022

Nathan Lazarus

How to solve dynamic games and dynamic
programming problems in parallel on a
computational grid

Computational structure and workflow

Applications:
strategic competition in the world oil market
integrated assessment models of climate change
R&D investment in a market with many firms
Production with inventories

Overview

Dynamic Games and HTCondor 2/64

Nathan Lazarus

HTCondor is a scheduling system for managing
distributed computing nodes.
Matches jobs and machines (nodes) based on
“ClassAds” (requirements—disk space, cores,
etc.)
HTC (high-throughput computing)
DAGMan: an extension to HTCondor that
allows workflows to be described as DAGs

Introducing HTCondor

Dynamic Games and HTCondor 3/64

Nathan Lazarus

Center for High Throughput Computing (UW-
Madison)
A cluster with over 20,000 total cores
Part of the Open Science Grid

CHTC

Dynamic Games and HTCondor 4/64

Nathan Lazarus

What makes problems acyclic?
Working on the extension to cyclic problems (will
talk more about it at the end, time permitting)

Directed Acyclic Graph Structure

Dynamic Games and HTCondor 5/64

Nathan Lazarus

Solve backwards from the terminal states
Works for anything with this unidirectional flow
(a dynamic game, dynamic programming
problems)

Solution Method

Dynamic Games and HTCondor 6/64

Nathan Lazarus

Oil Extraction
Oil doesn’t go back into the ground.

Time
A climate model where the terminal state is 600
years from now, and we solve for values and
optimal policies back to the present.

Applications

Dynamic Games and HTCondor 7/64

Nathan Lazarus

(Bold denotes vectors)

Cost:

Pricing:

Profit:

Reserves constraint:

The only effect of reserves is that production must be 0 if
reserves are 0. (A more realistic formulation is that production
becomes more costly as reserves approach 0.)

Oil Game Model: Static Component

Dynamic Games and HTCondor 8/64

Nathan Lazarus

Reserves transition:

Jumps:
(non-homogeneous Poisson process, equivalent to

stretching or compressing the time dimension of a standard
Poisson process)

Transition hazard rate:

Doraszelski-Judd (2012)

Oil Game Model: Dynamics

Dynamic Games and HTCondor 9/64

Nathan Lazarus

(ρ is the discount rate)

Bellman equation:

Investment FOC:

Oil Game Model: Solution

Dynamic Games and HTCondor 10/64

Nathan Lazarus

N quadratic value functions plus N linear FOCs:
Bézout number 2N

The value function surface is bumpy, so optimizers will
have trouble with it (and engage in implicit
equilibrium selection)
All-solution homotopy methods (Bertini, see Judd,
Renner and Schmedders (2012))

Deliberate equilibrium selection

Except Bertini can’t solve for constrained equilibria, so
implementing a barrier function approach

Solution Method

Dynamic Games and HTCondor 11/64

Nathan Lazarus

4 players, 100 states, value functions for the
firm/country with the second highest productivity
Parameter choices:

Oil Game Results

Dynamic Games and HTCondor 12/64

Nathan Lazarus

Policy functions very different from the planners’
(which is extract in the lowest-cost country first)

Oil Game Results

Dynamic Games and HTCondor 13/64

Nathan Lazarus

A small two-player game

The Computational Structure

Dynamic Games and HTCondor 14/64

Nathan Lazarus

A large two-player game

The Computational Structure

Dynamic Games and HTCondor 15/64

(I won’t try a visual of higher-dimensional cubes for the case with more than 2 players.)

Nathan Lazarus

4 players and 100
states means
1004=100 million
jobs.
Each one runs in a
tenth of a second.
There’s overhead to
every job submission.
Solution: group them
into batches

The Computational Structure

Dynamic Games and HTCondor 16/64

Nathan Lazarus

For this dynamic
programming problem, the
direction of flow is rotated
135 degrees; instead of
going down and to the
right, it flows left.
Again, I want to focus on
the sparsity of the state
transitions.
In the full model, we have
1729 state discrete states
per period, but each state
only has 35 possible
transitions, and 35
dependencies.

The Computational Structure

Dynamic Games and HTCondor 17/64

Nathan Lazarus

This type of
parallelization waits
for the last job from
one block before
starting on any jobs
in the next block.

Block-wise Parallelization

Dynamic Games and HTCondor 18/64

Nathan Lazarus

Starts jobs when their dependencies are ready.
Much more efficient on a computational grid:
6x speedup
Particularly beneficial on larger problems

Wavefront

Dynamic Games and HTCondor 19/64

Nathan Lazarus

Here, I sort jobs into blocks, and then within blocks by the time at which they’re submitted.

Wavefront

Dynamic Games and HTCondor 20/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 21/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 22/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 23/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 24/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 25/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 26/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 27/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 28/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 29/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 30/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 31/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 32/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 33/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 34/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 35/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 36/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 37/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 38/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 39/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 40/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 41/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 42/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 43/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 44/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 45/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 46/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 47/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 48/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 49/64

Nathan Lazarus

Wavefront

Dynamic Games and HTCondor 50/64

Nathan Lazarus

HTCondor is not the only job scheduling
system; there’s also:

sdag (Slurm version)
Pegasus and Wings (built on DAGMan)
CWL
Cylc (designed for cyclic workflows, but you can
also implement those in DAGMan with RETRY).

Implementing Wavefront

Dynamic Games and HTCondor 51/64

Nathan Lazarus

CHTC
Open Science Grid
JEODPP (European Commission JRC)
Google Cloud

Where to Use HTCondor

Dynamic Games and HTCondor 52/64

Nathan Lazarus

Running jobs on another computer can sound
difficult. How can you be sure that it will have
the programs and files required?
The solution: Docker containers!

(Can also transfer an executable)

Dependencies

Dynamic Games and HTCondor 53/64

Nathan Lazarus

Docker containers run jobs in the exact same
environment every time; as though you went on
the machine and installed a certain operating
system and all the programs you need.
But because the host computer already has the
Linux kernel, Docker can set up the container
quickly and easily (it’s generally less than 100 MB).
MATLAB (with a network license), Mathematica,
and even Stata are available in containers, and you
can add additional software to them.

Docker

Dynamic Games and HTCondor 54/64

Nathan Lazarus

GitHub for Docker containers
Free hosting
Public (so machines can pull your images)
With HTCondor’s Docker universe, the execute
nodes pull containers from Docker Hub by
default.

Docker Hub

Dynamic Games and HTCondor 55/64

Nathan Lazarus

(A continuous time adaptation of the model in Chapter 7 of Mordecai
Kurz’s Capital and Wealth in the Age of Technology, forthcoming)

This is a general equilibrium model of optimal R&D
investment, which we’re hoping to use to study
optimal antitrust policy.
State variable: R&D stock
Choice variable: R&D investment
Because larger firms affect the aggregate price more,
firms with greater market share face a smaller
elasticity of demand (Marshall’s “Second Law of
Demand,” Autor et al., 2020).

R&D Investment and Policy

Dynamic Games and HTCondor 27/64

Nathan Lazarus

yB is an outside good with price 1, zeta is aggregate productivity,
and ν is an investment cost with quadratic adjustment costs. yt is a
CES aggregate produced costlessly from the intermediate goods.

Production:

Outside good production:

Final good production:

Investment cost:

Profit:

R&D Model: Firms and Production

Dynamic Games and HTCondor 57/64

Nathan Lazarus

Labor aggregation:

Utility:

Income:
Optimization:

FOCs:

Price index:

Demand:

Market clearing:

R&D Model: Consumers’ Problem

Dynamic Games and HTCondor 58/64

Nathan Lazarus

R&D stock transition:

Jumps:

Transition hazard rate:

R&D Model: Dynamics

Dynamic Games and HTCondor 59/64

Nathan Lazarus

We get the optimal price in closed form, so we just solve for the
dynamically optimal investment (we rule out collusion and other
equilibria that aren’t Markov perfect). We take to be exogenous.

Elasticity of demand:

Pricing:

Investment FOC:

Bellman equation:

R&D Model: Solution

Dynamic Games and HTCondor 60/64

Nathan Lazarus

Every firm starts out the same; the differences
that arise are only due to the stochastic, self-
reinforcing nature of the R&D process.
With identical firms, the state (0, 1) has the same
solution as the state (1, 0). And in higher
dimensions, the state (0, 1, 2, 3) has the same
solution as (3, 0, 2, 1) and the 22 other
permutations.
The states to compute form a simplex, and pin
down solutions for the rest of the cube, vastly
reducing the computational burden.

Symmetry

Dynamic Games and HTCondor 32/64

Nathan Lazarus

Same parallel blocks (or, rather, their projection onto the simplex)

Symmetry

Dynamic Games and HTCondor 62/64

Nathan Lazarus

Cyclic games
Idea: path follow from the unidirectional solution
Iterating on the transition matrix moving with one
direction of travel is operator decomposition

Gauss-Seidel-style; good convergence properties
Challenges:

• Equilibrium multiplicity
• Dead ends

Future Work

Dynamic Games and HTCondor 63/64

Nathan Lazarus

Grid computing and workflow languages allow
the parallelization of dynamic programming
problems and dynamic games that can
otherwise be difficult to parallelize.
HTCondor and DAGMan are useful for
implementing this.

Conclusion

Dynamic Games and HTCondor 64/64

	Dynamic Games and HTCondor
	Overview
	Introducing HTCondor
	CHTC
	Directed Acyclic Graph Structure
	Solution Method
	Applications
	Oil Game Model: Static Component
	Oil Game Model: Dynamics
	Oil Game Model: Solution
	Solution Method
	Oil Game Results
	Oil Game Results
	The Computational Structure
	The Computational Structure
	The Computational Structure
	The Computational Structure
	Block-wise Parallelization
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Wavefront
	Implementing Wavefront
	Where to Use HTCondor
	Dependencies
	Docker
	Docker Hub
	R&D Investment and Policy
	R&D Model: Firms and Production
	R&D Model: Consumers’ Problem
	R&D Model: Dynamics
	R&D Model: Solution
	Symmetry
	Symmetry
	Future Work
	Conclusion

